

$8^{\text {th }}$ Grade Math

Module 2: The Concept of Congruence

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Module 2 of Eureka Math (Engage New York) focuses on translations, reflections, and rotations in the plane and precisely defines the concept of congruence.

Focus Area Topic D:

The Pythagorean Theorem

Informal Proof of the Pythagorean Theorem The Pythagorean Theorem is a famous theorem that will be used throughout much of high school mathematics. Consequently, students will see several proofs of the theorem throughout the course of the year.

4A AN Pythagorean Theorem AN 4A MA

4 If the lengths of the legs of a right triangle are a and b, and the length of the hypotenuse is c, then $a^{2}+b^{2}=c^{2}$.

4 Given a right triangle $A B C$ with C being the vertex of the right angle, then the sides $A C$ and $B C$ are called the legs of $\triangle A B C$ and $A B$ is called the HYPOTENUSE of $\triangle A B C$.

NOTE: side a is opposite of $\angle A$, side b is opposite of $\angle B$, and side c is opposite of $\angle C$.

Focus Area Topic D:

The Pythagorean Theorem
Students will be guided through the square within a square proof of the Pythagorean Theorem: this requires students to know that congruent figures also have congruent areas.

Our goal is to show that $a^{2}+b^{2}=c^{2}$. To do this, students will compare the total area of the outside square with the parts that compose it-specifically the four triangles and the smaller inside square.

ALGEBRAICALLY

AREA of the OUTSIDE SQUARE: $(a+b)^{2}=a^{2}+2 a b+b^{2}$ AREA of the FOUR TRIANGLES: $4\left(\frac{1}{2} a b\right)=2 a b$ AREA of the INSIDE SQUARE: c^{2}

AREA of OUTSIDE $\boldsymbol{m}=$ AREA of $4 \mathbf{\Delta}+$ AREA of INSIDE $■$ $a^{2}+2 a b+b^{2}=2 a b+c^{2}$

Simplify:

$\begin{aligned} a^{2}+2 a b-2 a b+b^{2} & =2 a b-2 a b+c^{2} \\ a^{2}+0 & +b^{2}\end{aligned}=0 \quad+c^{2}$
PROOF of the PYTHAGOREAN theorem using a square within a square.

Focus Area Topic D:

The Pythagorean Theorem

Can you label the sides of the right triangle above with leg, leg, and hypotenuse?
 SOLUTION:

Applications of the Pythagorean Theorem
The following examples come from the CLASS
EXERCISES and PROBLEM SETS for Lessons 15 \& 16.

Find the length of the hypotenuse for each of the triangles.

Find the length of the hypotenuse. (Find c.) \downarrow

Module 2: The Concept of Congruence

Applications of the Pythagorean Theorem

SOLUTIONS:

\#1

You have a 15 -foot ladder that needs to reach exactly 9 feet up the wall. How far away from the wall should you place the ladder to reach the desired height?

 SOLUTION:Let a represent the distance the ladder must be placed from the wall, then

$$
\begin{aligned}
a^{2}+9^{2} & =15^{2} \\
a^{2}+9^{2}-9^{2} & =15^{2}-9^{2} \\
a^{2} & =225-81 \\
a^{2} & =144 \\
a & =12
\end{aligned}
$$

The ladder must be placed exactly 12 feet from the wall.

