$8^{\text {th }}$ Grade Math

Module 4: Linear Equations

Math Parent Letter

This document is created to give parents and students a better understanding of the math concepts found in Eureka Math (© 2013 Common Core, Inc.) that is also posted as the Engage New York material which is taught in the classroom. Module 4 of Eureka Math (Engage New York) builds on ratios, rates, and unit rates to formally define proportional relationships and the constant of proportionality.

Focus Area Topic C:

Slope and Equations of Lines

 In Topic C, students first encounter slope by interpreting the unit rate of a graph. Students learn that slope can be determined using any two distinct points on a line. Students derive $y=m x$ and $y=m x+b$ for linear equations. Students generate graphs of linear equations in two variables by completing a table, then using information about slope and y-intercept. Students learn how to write equations of lines given slope and a point, and how to write an equation given two points. Students learn that multiple forms of an equation can define the same line.
Words to Know:

Unit Rate - the numeric value of a rate; a rate indicates how many units of one quantity there are for every 1 unit of the second quantity.

Slope - slope is a number that describes the "steepness" or "slant" of a line. It is the constant rate of change.

Slope Formula - $m=\frac{\text { rise }}{\text { run }}, m=\frac{\text { difference in } y \text {-values }}{\text { difference in } x \text {-values }}$,

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Slope Intercept Form - $y=m x+b$ where m is slope and b is the y-intercept
y-intercept - the point where graph intersects y-axis, $(0, \mathrm{~b})$; the initial value of the relation.
x -intercept - the point where the graph intersects x -axis, (x, 0)

The Slope of a Non-Vertical Line

Students know slope is a number that describes the steepness or slant of a line. Please note, lines that are left-to-right inclining are said to have positive slope, and lines that are left-to-right declining are said to have negative slope. To determine which lines have the steeper slope, students compare absolute values of the slopes.

Focus Area Topic C:
Slope and Equations of Lines

Interpret the Unit Rate as the Slope of a Graph Example:

A copy machine makes copies at a constant rate. The machine can make 80 copies in $2 \frac{1}{2}$ minutes. How many copies can the machine make each minute; that is, what is the unit rate of the copy machine?

t time in minutes	Linear equation: $\mathrm{n}=32 \mathrm{t}$	n number of copies
0	$\mathrm{n}=32(0)$	0
0.25	$\mathrm{n}=32(0.25)$	8
0.5	$\mathrm{n}=32(0.5)$	16
0.75	$\mathrm{n}=32(0.75)$	24
1	$\mathrm{n}=32(1)$	32

Hint: to explain the equation $\frac{80}{2 \frac{1}{2}}=\frac{80}{\frac{5}{2}}=80 \cdot \frac{2}{5}=32$

Refer to table and/or graph and identify the output, n, when $t=1$. The unit rate is 32 copies per 1 minute.

The Computation of the Slope of a Line

Students use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. Students can also use the slope formula to compute the slope of a non-vertical line.

Example:

Calculate the slope of the line using different pairs of points.

These slope triangles are similar triangles, and the ratios are equivalent.

Slope and Equations of Lines

Identifying Slope in Linear Equations

Example:

You bave $\$ 20$ in savings at the bank. Each week, you add $\$ 2$ to your savings. Let y represent the total aprount money you have saved at the end of x weeks. Write ap equation to represent this situation and identify the slope of the equation. What does that number represent?

slope/ $\left.y=2 x+20 \quad \begin{array}{c}\text {-intercept/ } \\ \text { rate of change }\end{array}\right]$
The slope is 2 and it represents how much money is saved each week

There is Only One Line Passing Through a Given Point with a Given Slope

Students graph equations in the form of $y=m x+b$ using information about slope and y-intercept. Students know that if they have two straight lines with the same slope and a common point that the lines are the same.

Example:

Graph the equation $y=\frac{5}{2} x-4$.
a. Name the slope and the y-intercept.

$$
\mathrm{m}=\frac{5}{2} \quad \mathrm{y} \text {-intercept is }(0,-4)
$$

b. Graph

Step 1

Graphing a Linear Equation Using x - and y-intercepts.
A linear equation can be graphed using two points: the x intercept and the y-intercept. This strategy is typically used when the equation is not in slope-intercept form.

Example:

Graph the equation $2 x+3 y=9$
Step 1: Replace x with zero and solve for y .

Step 2: Replace y with zero and solve for x .

Step 1:
Plot y-intercept
Step 2:
Use slope
$\frac{\text { rise }}{\text { run }}=\frac{5}{2}$ to find
another point
Step 3:
Plot $2^{\text {nd }}$ point

$$
\begin{aligned}
& \text { Step 1: } \\
& \begin{aligned}
2(0)+3 y & =9 \\
3 y & =9 \\
y & =3
\end{aligned}
\end{aligned}
$$

The y-intercept is at $(0,3)$

Step 2:

$2 \mathrm{x}+3(\mathbf{0})=9$

$$
\begin{gathered}
2 x=9 \\
y=\frac{9}{2}
\end{gathered}
$$

The x -intercept is at $(4.5,0)$

Graphing a Linear Equation Using x - and y-intercepts. (continued)

Step 3: Graph

Every Line is a Graph of a Linear Equation

Students know that any non-vertical line is the graph of a linear equation in the form of $y=m x+b$, where m is the slope/rate of change and b is a constant (y-intercept/initial value).
Students write the equation that represents the graph of a line.

Example:

Write the equation that represents the line shown.

$$
\begin{aligned}
& y=m x+b \\
& y=3 x+2
\end{aligned}
$$

Some Facts about Graphs of Linear Equations in Two Variables
Students write the equation of a line given two points or the slope and a point on the line. Students know the traditional forms of the slope formula and slope-intercept equation.

Example:

Write the equation for the line passing through $(-1,-3)$ and $(2,-2)$.
Step 1: Find slope using slope formula. $m=\frac{-3-(-2)}{-1-2}$

$$
=\frac{-1}{-3}=\frac{1}{3}
$$

Step 2: Choose one of the points, let's say $(2,-2)$. Substitute the coordinates into the slope intercept form equation.

$$
\begin{aligned}
& y=m x+b \\
& -2=\frac{1}{3}(2)+b \\
& -2=\frac{2}{3}+b
\end{aligned}
$$

Step 3: Solve for b.

$$
\begin{gathered}
-2-\frac{2}{3}=\frac{2}{3}-\frac{2}{3}+b \\
-\frac{8}{3}=\boldsymbol{b}
\end{gathered}
$$

Step 4: Use slope, m, and y-intercept, b, to write equation in slope intercept form.

$$
y=\frac{1}{3} x-\frac{8}{3}
$$

